Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.053
Filtrar
1.
J Agric Food Chem ; 72(12): 6236-6249, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38484389

RESUMO

Hypercholesterolemia poses a significant cardiovascular risk, particularly in postmenopausal women. The anti-hypercholesterolemic properties of Lactiplantibacillus plantarum ATCC8014 (LP) are well recognized; however, its improving symptoms on postmenopausal hypercholesterolemia and the possible mechanisms have yet to be elucidated. Here, we utilized female ApoE-deficient (ApoE-/-) mice undergoing bilateral ovariectomy, fed a high-fat diet, and administered 109 colony-forming units (CFU) of LP for 13 consecutive weeks. LP intervention reduces total cholesterol (TC) and triglyceride (TG) accumulation in the serum and liver and accelerates their fecal excretion, which is mainly accomplished by increasing the excretion of fecal secondary bile acids (BAs), thereby facilitating cholesterol conversion. Correlation analysis revealed that lithocholic acid (LCA) is an important regulator of postmenopausal lipid abnormalities. LP can reduce LCA accumulation in the liver and serum while enhancing its fecal excretion, accomplished by elevating the relative abundances of Allobaculum and Olsenella in the ileum. Our findings demonstrate that postmenopausal lipid dysfunction is accompanied by abnormalities in BA metabolism and dysbiosis of the intestinal microbiota. LP holds therapeutic potential for postmenopausal hypercholesterolemia. Its effectiveness in ameliorating lipid dysregulation is primarily achieved through reshaping the diversity and abundance of the intestinal microbiota to correct BA abnormalities.


Assuntos
Microbioma Gastrointestinal , Hipercolesterolemia , Lactobacillus plantarum , Humanos , Feminino , Camundongos , Animais , Hipercolesterolemia/metabolismo , Ácidos e Sais Biliares/metabolismo , Pós-Menopausa , Colesterol/metabolismo , Lactobacillus plantarum/metabolismo , Fígado/metabolismo , Apolipoproteínas E/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
2.
Cell ; 187(7): 1685-1700.e18, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38503280

RESUMO

The reciprocal coordination between cholesterol absorption in the intestine and de novo cholesterol synthesis in the liver is essential for maintaining cholesterol homeostasis, yet the mechanisms governing the opposing regulation of these processes remain poorly understood. Here, we identify a hormone, Cholesin, which is capable of inhibiting cholesterol synthesis in the liver, leading to a reduction in circulating cholesterol levels. Cholesin is encoded by a gene with a previously unknown function (C7orf50 in humans; 3110082I17Rik in mice). It is secreted from the intestine in response to cholesterol absorption and binds to GPR146, an orphan G-protein-coupled receptor, exerting antagonistic downstream effects by inhibiting PKA signaling and thereby suppressing SREBP2-controlled cholesterol synthesis in the liver. Therefore, our results demonstrate that the Cholesin-GPR146 axis mediates the inhibitory effect of intestinal cholesterol absorption on hepatic cholesterol synthesis. This discovered hormone, Cholesin, holds promise as an effective agent in combating hypercholesterolemia and atherosclerosis.


Assuntos
Colesterol , Hormônios , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Colesterol/metabolismo , Hormônios/genética , Hormônios/metabolismo , Hipercolesterolemia/metabolismo , Fígado/metabolismo , Transdução de Sinais , Proteínas de Ligação a RNA/metabolismo
3.
Clin Sci (Lond) ; 138(4): 137-151, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38299431

RESUMO

Hypercholesterolemia in pregnancy is a physiological process required for normal fetal development. In contrast, excessive pregnancy-specific hypercholesterolemia increases the risk of complications, such as preeclampsia. However, the underlying mechanisms are unclear. Toll-like receptor 4 (TLR4) is a membrane receptor modulated by high cholesterol levels, leading to endothelial dysfunction; but whether excessive hypercholesterolemia in pregnancy activates TLR4 is not known. We hypothesized that a high cholesterol diet (HCD) during pregnancy increases TLR4 activity in uterine arteries, leading to uterine artery dysfunction. Sprague Dawley rats were fed a control diet (n=12) or HCD (n=12) during pregnancy (gestational day 6-20). Vascular function was assessed in main uterine arteries using wire myography (vasodilation to methacholine and vasoconstriction to phenylephrine; with and without inhibitors for mechanistic pathways) and pressure myography (biomechanical properties). Exposure to a HCD during pregnancy increased maternal blood pressure, induced proteinuria, and reduced the fetal-to-placental weight ratio for both sexes. Excessive hypercholesterolemia in pregnancy also impaired vasodilation to methacholine in uterine arteries, whereby at higher doses, methacholine caused vasoconstriction instead of vasodilation in only the HCD group, which was prevented by inhibition of TLR4 or prostaglandin H synthase 1. Endothelial nitric oxide synthase expression and nitric oxide levels were reduced in HCD compared with control dams. Vasoconstriction to phenylephrine and biomechanical properties were similar between groups. In summary, excessive hypercholesterolemia in pregnancy impairs uterine artery function, with TLR4 activation as a key mechanism. Thus, TLR4 may be a target for therapy development to prevent adverse perinatal outcomes in complicated pregnancies.


Assuntos
Hipercolesterolemia , Hiperlipidemias , Animais , Feminino , Masculino , Gravidez , Ratos , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Cloreto de Metacolina/metabolismo , Fenilefrina/farmacologia , Fenilefrina/metabolismo , Placenta , Ratos Sprague-Dawley , Receptor 4 Toll-Like/metabolismo , Artéria Uterina/metabolismo , Vasodilatação/fisiologia
4.
Gene ; 909: 148302, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38401833

RESUMO

Changes in circulating let-7c were significantly associated with the alter in lipid profile, but its role in intracellular lipid metabolism remains unknown. This work was conducted to explore the effects of let-7c on the lipid accumulation in macrophages and uncover the underlying mechanism. Our results showed that let-7c inhibition relieved atherosclerosis progression in apoE-/- mice. In ox-LDL-treatment macrophages, let-7c knockdown suppressed lipid accumulation but does no affect cholesterol intake. Consistent with this, overexpression of let-7c promoted lipid accumulation by reducing the expression of LXRα and ABCA1/G1. Mechanistically, let-7c targeted PGC-1α to repress the expression of LXRα and ABCA1/G1, thereby regulating cholesterol homeostasis in macrophages. Taken together, these findings suggest that antagonism of let-7c reduces atherosclerosis and macrophage lipid accumulation through the PGC-1α/LXRα/ABCA1/G1 axis.


Assuntos
Aterosclerose , Hipercolesterolemia , Animais , Camundongos , Colesterol/metabolismo , Macrófagos/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Hipercolesterolemia/metabolismo , Metabolismo dos Lipídeos/genética , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo
5.
Gene ; 908: 148295, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38387707

RESUMO

Intramuscular fat (IMF) deposition profoundly influences meat quality and economic value in beef cattle production. Meanwhile, contemporary developments in epigenetics have opened new outlooks for understanding the molecular basics of IMF regulation, and it has become a key area of research for world scholars. Therefore, the aim of this paper was to provide insight and synthesis into the intricate relationship between epigenetic mechanisms and IMF deposition in beef cattle. The methodology involves a thorough analysis of existing literature, including pertinent books, academic journals, and online resources, to provide a comprehensive overview of the role of epigenetic studies in IMF deposition in beef cattle. This review summarizes the contemporary studies in epigenetic mechanisms in IMF regulation, high-resolution epigenomic mapping, single-cell epigenomics, multi-omics integration, epigenome editing approaches, longitudinal studies in cattle growth, environmental epigenetics, machine learning in epigenetics, ethical and regulatory considerations, and translation to industry practices from perspectives of IMF deposition in beef cattle. Moreover, this paper highlights DNA methylation, histone modifications, acetylation, phosphorylation, ubiquitylation, non-coding RNAs, DNA hydroxymethylation, epigenetic readers, writers, and erasers, chromatin immunoprecipitation followed by sequencing, whole genome bisulfite sequencing, epigenome-wide association studies, and their profound impact on the expression of crucial genes governing adipogenesis and lipid metabolism. Nutrition and stress also have significant influences on epigenetic modifications and IMF deposition. The key findings underscore the pivotal role of epigenetic studies in understanding and enhancing IMF deposition in beef cattle, with implications for precision livestock farming and ethical livestock management. In conclusion, this review highlights the crucial significance of epigenetic pathways and environmental factors in affecting IMF deposition in beef cattle, providing insightful information for improving the economics and meat quality of cattle production.


Assuntos
Epigenômica , Hipercolesterolemia , Bovinos/genética , Animais , Músculo Esquelético/metabolismo , Regulação da Expressão Gênica , Adipogenia/genética , Hipercolesterolemia/metabolismo , Epigênese Genética
6.
Arch Toxicol ; 98(3): 849-863, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38180513

RESUMO

Trophoblast cell syncytialization is essential for placental and fetal development. Abnormal trophoblast cell fusion leads to pregnancy pathologies, such as preeclampsia (PE), intrauterine growth restriction (IUGR), and miscarriage. 27-hydroxycholesterol (27-OHC) is the most abundant oxysterol in human peripheral blood synthesized by sterol 27-hydroxylase (CYP27A1) and is considered a critical mediator between hypercholesterolemia and a variety of related disorders. Gestational hypercholesterolemia was associated with spontaneous preterm delivery and low birth weight (LBW) in term infants, yet the mechanism is unclear. In this study, two trophoblast cell models and CD-1 mice were used to evaluate the effects of 27-OHC on trophoblast fusion during placenta development. Two different kinds of trophoblast cells received a dosage of 2.5, 5, or 10 uM 27-OHC. Three groups of pregnant mice were randomly assigned: control, full treatment (E0.5-E17.5), or late treatment (E13.5-E17.5). All mice received daily intraperitoneal injections of saline (control group) and 27-OHC (treatment group; 5.5 mg/kg). In vitro experiments, we found that 27-OHC inhibited trophoblast cell fusion in primary human trophoblasts (PHT) and forskolin (FSK)-induced BeWo cells. 27-OHC up-regulated the expression of the PI3K/AKT/mTOR signaling pathway-related proteins. Moreover, the PI3K inhibitor LY294002 rescued the inhibitory effect of 27-OHC. Inhibition of trophoblast cell fusion by 27-OHC was also observed in CD-1 mice. Furthermore, fetal weight and placental efficiency decreased and fetal blood vessel development was inhibited in pregnant mice treated with 27-OHC. This study was the first to prove that 27-OHC inhibits trophoblast cell fusion by Activating PI3K/AKT/mTOR signaling pathway. This study reveals a novel mechanism by which dyslipidemia during pregnancy results in adverse pregnancy outcomes.


Assuntos
Hidroxicolesteróis , Hipercolesterolemia , Placenta , Gravidez , Feminino , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Trofoblastos , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
7.
Food Funct ; 15(1): 265-283, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38059679

RESUMO

Hyperlipidemia is a common clinical disorder of lipid metabolism in modern society and is considered to be one of the major risk factors leading to cardiovascular-related diseases. Germinated brown rice (GBR) is a typical whole grain food. The lipid-lowering effect of GBR has received increasing attention, but its mechanism of action is not fully understood. The gut microbiota has been proposed as a novel target for the treatment of hyperlipidemia. The aim of this study was to investigate the effects of GBR on the gut microbiota and lipid metabolism in high-fat diet (HFD)-fed C57BL/6J mice. The effect of GBR on hyperlipidemia was evaluated by measuring blood lipid levels and by pathological examination. The gut microbiota was detected by 16S rRNA sequencing, and the protein and mRNA expression levels involved in cholesterol metabolism were detected by western blotting and RT-qPCR to find potential correlations. The results showed that GBR supplementation could effectively reduce the levels of TC, TG, LDL-C and HDL-C in the serum and alleviate the excessive accumulation of fat droplets caused by HFD. Moreover, GBR intervention improved HFD-fed gut microbiota disorder via increasing the diversity of the gut microbiota, reducing the Firmicutes/Bacteroidetes ratio, and improving gut barrier damage. In addition, GBR could inhibit endogenous cholesterol synthesis and promote cholesterol transport and excretion. These findings suggest that GBR may be a competitive candidate for the development of functional foods to prevent abnormal lipid metabolism.


Assuntos
Microbioma Gastrointestinal , Hipercolesterolemia , Hipertrigliceridemia , Oryza , Animais , Camundongos , Colesterol , Dieta Hiperlipídica/efeitos adversos , Hipercolesterolemia/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Camundongos Endogâmicos C57BL , Oryza/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Grãos Integrais
8.
Life Sci ; 336: 122321, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042280

RESUMO

AIMS: Alcoholic liver disease (ALD) can develop into cirrhosis and hepatocellular carcinoma but no specific drugs are available. Fenofibrate is therapeutically effective in ALD, however, the exact mechanism remains unknown. We explored the hub genes of ALD and the role of fenofibrate in ALD. MAIN METHODS: The hub genes of ALD were screened by bioinformatics method, and their functional enrichment, signalling pathways, target genes and their correlation with immune microenvironment and pathogenic genes were analysed. We also analysed the binding affinity of fenofibrate to proteins of hub genes using molecular docking techniques, and the effects on hub gene expression, lipid deposition, oxidative stress and inflammation in the liver of National Institute on Alcohol Abuse and Alcoholism (NIAAA) model mice. The regulatory effects of fenofibrate on MOXD1 and PDZK1P1 were investigated after gene silencing of peroxisome proliferator-activated receptor-α (Ppar-α). KEY FINDINGS: Hub genes identified, including monooxygenase DBH-like 1 (MOXD1), PDZK1-interacting protein 1 (PDZK1IP1) and solute carrier 51 ß (SLC51B), are highly predictive for ALD. Hepatic MOXD1 and PDZK1IP1 expression was elevated in patients with ALD and NIAAA model mice, with no significant difference in SLC51B expression between the groups. Fenofibrate binds tightly to MOXD1 and PDZK1IP1, inhibits their hepatic expression independently of PPAR-α signalling, and ameliorates lipid deposition, oxidative stress and inflammatory responses in NIAAA model mice. SIGNIFICANCE: MOXD1 and PDZK1IP1 are key genes in ALD progression; fenofibrate improves liver damage in NIAAA model mice by downregulating their expression. Our findings provide insight for improving diagnostic and therapeutic strategies for ALD.


Assuntos
Fígado Gorduroso Alcoólico , Fenofibrato , Hipercolesterolemia , Hepatopatias Alcoólicas , Camundongos , Humanos , Animais , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Fígado Gorduroso Alcoólico/tratamento farmacológico , Simulação de Acoplamento Molecular , Fígado/metabolismo , Inflamação/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Hipercolesterolemia/metabolismo , Hepatopatias Alcoólicas/patologia , Lipídeos/farmacologia , Proteínas de Membrana/metabolismo
9.
Ageing Res Rev ; 93: 102149, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056504

RESUMO

Familial hypercholesterolemia (FH) is a metabolic condition caused mainly by a mutation in the low-density lipoprotein (LDL) receptor gene (LDLR), which is highly prevalent in the population. Besides being an important causative factor of cardiovascular diseases, FH has been considered an early risk factor for Alzheimer's disease. Cognitive and emotional behavioral impairments in LDL receptor knockout (LDLr-/-) mice are associated with neuroinflammation, blood-brain barrier dysfunction, impaired neurogenesis, brain oxidative stress, and mitochondrial dysfunction. Notably, today, LDLr-/- mice, a widely used animal model for studying cardiovascular diseases and atherosclerosis, are also considered an interesting tool for studying dementia. Here, we reviewed the main findings in LDLr-/- mice regarding the relationship between FH and brain dysfunctions and dementia development.


Assuntos
Doença de Alzheimer , Doenças Cardiovasculares , Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , Animais , Camundongos , Hipercolesterolemia/epidemiologia , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Doenças Cardiovasculares/genética , Fatores de Risco , Hiperlipoproteinemia Tipo II/complicações , Hiperlipoproteinemia Tipo II/genética , Encéfalo/metabolismo , Cognição , Fatores de Risco de Doenças Cardíacas
10.
J Physiol Biochem ; 80(1): 205-218, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37996652

RESUMO

O-GlcNAcylation, a nutritionally driven, post-translational modification of proteins, is gaining importance because of its health implications. Changes in O-GlcNAcylation are observed in various disease conditions. Changes in O-GlcNAcylation by diet that causes hypercholesterolemia are not critically looked into in the liver. To address it, both in vitro and in vivo approaches were employed. Hypercholesterolemia was induced individually by feeding cholesterol (H)/high-fat (HF) diet. Global O-GlcNAcylation levels and modulation of AMPK activation in both preventive and curative approaches were looked into. Diet-induced hypercholesterolemia resulted in decreased O-GlcNAcylation of liver proteins which was associated with decreased O-linked N-acetylglucosaminyltransferase (OGT) and Glutamine fructose-6-phosphate amidotransferase-1 (GFAT1). Activation of AMPK by metformin in preventive mode restored the O-GlcNAcylation levels; however, metformin treatment of HepG2 cells in curative mode restored O-GlcNAcylation levels in HF but failed to in H condition (at 24 h). Further, maternal faulty diet resulted in decreased O-GlcNAcylation in pup liver despite feeding normal diet till adulthood. A faulty diet modulates global O-GlcNAcylation of liver proteins which is accompanied by decreased AMPK activation which could exacerbate metabolic syndromes through fat accumulation in the liver.


Assuntos
Proteínas Quinases Ativadas por AMP , Hipercolesterolemia , Metformina , Proteínas Quinases Ativadas por AMP/genética , Dieta Hiperlipídica/efeitos adversos , Hipercolesterolemia/metabolismo , Fígado/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Camundongos , Glicosilação
11.
Obes Rev ; 25(3): e13672, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38069529

RESUMO

There is increasing evidence that hypercholesterolemia has an intrauterine developmental origin. However, the pathogenesis of fetal-originated is still lacking in a theoretical system, which makes its clinical early prevention and treatment difficult. It has been found that an adverse environment during pregnancy (e.g., xenobiotic exposure) may lead to changes in fetal blood cholesterol levels through changing maternal cholesterol metabolic function and/or placental cholesterol transport function and may also directly affect the liver cholesterol metabolic function of the offspring in utero and continue after birth. Adverse environmental conditions during pregnancy may also raise maternal glucocorticoid levels and promote the placental glucocorticoid barrier opening, leading to fetal overexposure to maternal glucocorticoids. Intrauterine high-glucocorticoid exposure can alter the liver cholesterol metabolism of offspring, resulting in an increased susceptibility to hypercholesterolemia after birth. Abnormal epigenetic modifications are involved in the intrauterine programming mechanism of fetal-originated hypercholesterolemia. Some interventions targeted at pregnant mothers or offspring in early life have been proposed to effectively prevent and treat the development of fetal-originated hypercholesterolemia. In this paper, the recent research progress on fetal-originated hypercholesterolemia was reviewed, with emphasis on intrauterine maternal glucocorticoid programming mechanisms, in order to provide a theoretical basis for its early clinical warning, prevention, and treatment.


Assuntos
Hipercolesterolemia , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Feminino , Hipercolesterolemia/prevenção & controle , Hipercolesterolemia/etiologia , Hipercolesterolemia/metabolismo , Glucocorticoides/metabolismo , Placenta/metabolismo , Colesterol , Epigênese Genética , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Efeitos Tardios da Exposição Pré-Natal/metabolismo
12.
Int Immunopharmacol ; 127: 111409, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38118312

RESUMO

Several studies have demonstrated suppression of aortic atherosclerosis by insulin like growth factor-1 (IGF-1) in hypercholesterolemic rabbits. Though a recent study has reported that IGF-1 exerts anti-atherogenic effects in coronary arteries, the mechanisms of IGF-1 in coronary arteries need to be further verified. Studies about insulin like growth factor binding protein-2 (IGFBP-2) in atherosclerosis are rarely. The objective of this study is to examine the effects of IGF-1 and IGFBP-2 on the atherosclerosis development in the aorta and coronary arteries of the high-cholesterol diet (HCD)-fed rabbits. New Zealand white rabbits were fed either normal chow (n = 5) or a diet containing 1.0 % cholesterol (n = 18) for 12 weeks. Cholesterol-fed rabbits were given IGF-1 or IGFBP-2 or saline intravenously (each n = 6) for 10 weeks. The results revealed that IGF-1 decreased total cholesterol (TC) and low-density lipoprotein (LDL) levels (p < 0.05), whereas IGFBP-2 did not. IGF-1 significantly attenuated atherosclerotic lesions and reduced accumulated macrophages within the coronary artery plaques, whereas IGFBP-2 deteriorated these changes. Moreover, IGF-1 reduced serum platelet-activating factor acetylhydrolase levels, C reactive protein (CRP), and inhibited the protein expression levels of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). IGFBP-2 elevated serum 8-hydroxy-2'-deoxyguanosine levels, CRP, and promoted the protein expression levels of TNF-α and IL-6. In conclusion, IGF-1 can substantially suppress plaque formation in coronary arteries with a marked inhibition of macrophage accumulation likely via its anti-inflammatory properties, whereas IGFBP-2 plays an opposite effect on atherosclerosis. The present study highlighted a theoretical basis for pharmacological treatment of atherosclerosis.


Assuntos
Aterosclerose , Hipercolesterolemia , Coelhos , Animais , Vasos Coronários/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/uso terapêutico , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Aterosclerose/patologia , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Colesterol/metabolismo , Aorta/patologia , Dieta
13.
J Ethnopharmacol ; 322: 117644, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38135227

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hyperlipidemia is characterized by the disorder of lipid metabolism accompanied by oxidative stress damage, and low-grade inflammation, with the pathway of cholesterol and bile acid metabolic are an important triggering mechanism. Polymethoxyflavones (PMFs) are the active constituents of Aurantii Fructus Immaturus, which have many biological effects, including anti-inflammatory, antioxidant activities, anti-obesity, suppressing adipogenesis in adipocytes, and ameliorate type 2 diabetes, with potential roles for regulation of lipid metabolism. However, its associated mechanisms on hyperlipidemia remain unclear. AIM OF THE STUDY: This study aims to identify the anti-hypercholesterolemia effects and mechanisms of PMFs in a hypercholesterolemia model triggered by high-fat compounds in an excessive alcohol diet (HFD). MATERIALS AND METHODS: A hypercholesterolemia rat model was induced by HFD, and PMFs was intragastric administered at 125 and 250 mg/kg daily for 16 weeks. The effects of PMFs on hypercholesterolemia were assessed using serum lipids, inflammatory cytokines, and oxidative stress levels. Hematoxylin & eosin (H&E) and Oil Red O staining were performed to evaluate histopathological changes in the rat liver. The levels of total cholesterol (TC) and total bile acid (TBA) in the liver and feces were determined to evaluate lipid metabolism. RAW264.7 and BRL cells loaded with NBD-cholesterol were used to simulate the reverse cholesterol transport (RCT) process in vitro. The signaling pathway of cholesterol and bile acid metabolic was evaluated by Western Blotting (WB) and qRT-PCR. RESULTS: Lipid metabolism disorders, oxidative stress injury, and low-grade inflammation in model rats were ameliorated by PMFs administration. Numerous vacuoles and lipid droplets in hepatocytes were markedly reduced. In vitro experiments results revealed decreased NBD-cholesterol levels in RAW264.7 cells and increased NBD-cholesterol levels in BRL cells following PMFs intervention. PMFs upregulated the expression of proteins associated with the RCT pathway, such as LXRα, ABCA1, LDLR, and SR-BI, thereby promoting TC entry into the liver. Meanwhile, the expression of proteins associated with cholesterol metabolism and efflux pathways such as CYP7A1, CYP27A1, CYP7B1, ABCG5/8, ABCB1, and BSEP were regulated, thereby promoting cholesterol metabolism. Moreover, PMFs treatment regulated the expression of proteins related to the pathway of enterohepatic circulation of bile acids, such as ASBT, OSTα, NTCP, FXR, FGF15, and FGFR4, thereby maintaining lipid metabolism. CONCLUSIONS: PMFs might ameliorate hypercholesterolemia by promoting the entry of cholesterol into the liver through the RCT pathway, followed by excretion via metabolism pathways of cholesterol and bile acid. These findings provide a promising therapeutic potential for PMFs to treat hypercholesterolemia.


Assuntos
Hipercolesterolemia , Hiperlipidemias , Ratos , Animais , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Colesterol , Fígado , Hiperlipidemias/metabolismo , Metabolismo dos Lipídeos , Colesterol 7-alfa-Hidroxilase/metabolismo , Inflamação/patologia , Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica
14.
Neurosci Lett ; 818: 137533, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865186

RESUMO

Hypercholesterolemia is a risk factor for Alzheimer's disease (AD). Plasma cholesterol does not pass the blood-brain barrier whereas its metabolite 27-hydroxycholesterol (27-OHC) can enter the brain. High 27-OHC in the brain has been suggested to mediate hypercholesterolemia-induced impairments of learning and memory through promoting amyloid-ß accumulation and facilitating synaptic disruption. In AD brains, the activity of histone deacetylase (HDAC) is elevated. Treating AD animals with HDAC inhibitors decreases amyloid-ß levels and synaptic damages, which leads to memory improvement. Whether HDAC activity is involved in the actions of 27-OHC is still uncertain. In this study, 4 weekly injections of 27-OHC/vehicle were given to rats followed by 3 daily injections of HDAC inhibitor trichostatin (TSA)/vehicle. The results of Morris water maze test reveal that all rats have intact spatial learning ability during the 5-d training phase. However, the behavioral performance during the probe trial was impaired by 27-OHC treatment, which was improved by adding TSA treatments. Furthermore, 27-OHC treatments reduced the hippocampal levels of acetylated histone H3, acetylated α tubulin, insulin-degrading enzyme and postsynaptic protein PSD-95, indicating that 27-OHC treatments may induce enhanced HDAC activity, decreased amyloid-ß clearance and synaptic disruption. All reduced levels returned to the basal levels by adding TSA treatments. These findings support our hypothesis that HDAC activity is enhanced following long-term exposure to excess 27-OHC.


Assuntos
Doença de Alzheimer , Inibidores de Histona Desacetilases , Hipercolesterolemia , Animais , Ratos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Hipercolesterolemia/metabolismo , Aprendizagem Espacial
15.
Biochem Pharmacol ; 220: 115985, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154545

RESUMO

Despite the availability of many therapeutic options, the prevalence of hypercholesterolemia remains high. There exists a significant unmet medical need for novel drugs and/or treatment combinations to effectively combat hypercholesterolemia while minimizing adverse reactions. The modulation of cholesterol 7α-hydroxylase (CYP7A1) expression via perturbation of the farnesoid X receptor (FXR) - dependent pathways, primarily FXR/small heterodimer partner (SHP) and FXR/ fibroblast growth factor (FGF)-19/ fibroblast growth factor receptor (FGFR)-4 pathways, presents as a potential option to lower cholesterol levels. This paper provides a comprehensive review of the important role that CYP7A1 plays in cholesterol homeostasis and how its expression can be exploited to assert differential control of bile acid synthesis and cholesterol metabolism. Additionally, the paper also summarizes the current therapeutic options for hypercholesterolemia, and positions modulators of CYP7A1 expression, namely FGFR4 inhibitors and FXR antagonists, as emerging and distinct pharmacological agents to complement and diversify the treatment regime. Their mechanistic and clinical considerations are also extensively described to interrogate the benefits and risks associated with using FXR-mediating agents, either singularly or in combination with recognised agents such as statins to target hypercholesterolemia.


Assuntos
Hipercolesterolemia , Humanos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Fígado/metabolismo , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo
16.
In Vivo ; 38(1): 98-106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38148058

RESUMO

BACKGROUND/AIM: Atherosclerosis is known as a major risk factor for cardiovascular disease, and development of an animal model of atherosclerosis is required to investigate its clinical pathogenesis. We studied the optimal amount of cholesterol in the diet and the optimal experimental period for development of a Microminipig model of atherosclerosis for the evaluation of a hydroxymethylglutaryl-CoA reductase (HMGCR) inhibitor (atorvastatin). MATERIALS AND METHODS: Eighteen male animals (3-4 months old) were divided into 3 groups. Group 1 consisted of control animals receiving a normal chow diet, Group 2 animals received a high fat (12% w/w) and low cholesterol (0.1% w/w) diet (HFLCD), and Group 3 animals received HFLCD+statin for 12 weeks. Animals received statin at 3 mg/kg body weight per day. HFLCD did not down-regulate the hepatic expression of HMGCR mRNA. RESULTS: HFLCD increased body, omentum, and mesenteric adipose tissue weight, and induced hypercholesterolemia and atherosclerotic lesions in the abdominal aorta. HFLCD+statin inhibited hypercholesterolemia and atherosclerotic lesions, but not obesity. CONCLUSION: A microminipig atherosclerosis model induced by HFLCD can be used in the evaluation of HMGCR inhibitors for the treatment of hypercholesterolemia and atherosclerosis.


Assuntos
Aterosclerose , Inibidores de Hidroximetilglutaril-CoA Redutases , Hipercolesterolemia , Hiperlipidemias , Animais , Masculino , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/etiologia , Aterosclerose/metabolismo , Colesterol
17.
Cancer Immunol Immunother ; 72(12): 4441-4456, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919522

RESUMO

BACKGROUND: Hypercholesterolemia is one of the risk factors for colorectal cancer (CRC). Cholesterol can participate in the regulation of human T cell function and affect the occurrence and development of CRC. OBJECTIVE: To elucidate the pathogenesis of CRC immune escape mediated by CD8+ T cell exhaustion induced by cholesterol. METHODS: CRC samples (n = 217) and healthy individuals (n = 98) were recruited to analyze the relationship between peripheral blood cholesterol levels and the clinical features of CRC. An animal model of CRC with hypercholesterolemia was established. Intraperitoneal intervention with endoplasmic reticulum stress (ERS) inhibitors in hypercholesterolemic CRC mice was performed. CD69, PD1, TIM-3, and CTLA-4 on CD8+ T cells of spleens from C57BL/6 J mice were detected by flow cytometry. CD8+ T cells were cocultured with MC38 cells (mouse colon cancer cell line). The proliferation, apoptosis, migration and invasive ability of MC38 cells were detected by CCK-8 assay, Annexin-V APC/7-AAD double staining, scratch assay and transwell assay, respectively. Transmission electron microscopy was used to observe the ER structure of CD8+ T cells. Western blotting was used to detect the expression of ERS and mitophagy-related proteins. Mitochondrial function and energy metabolism were measured. Immunoprecipitation was used to detect the interaction of endoplasmic reticulum-mitochondria contact site (ERMC) proteins. Immunofluorescence colocalization was used to detect the expression and intracellular localization of ERMC-related molecules. RESULTS: Peripheral blood cholesterol-related indices, including Tc, low density lipoproteins (LDL) and Apo(a), were all increased, and high density lipoprotein (HDL) was decreased in CRCs. The proliferation, migration and invasion abilities of MC38 cells were enhanced, and the proportion of tumor cell apoptosis was decreased in the high cholesterol group. The expression of IL-2 and TNF-α was decreased, while IFN-γ was increased in the high cholesterol group. It indicated high cholesterol could induce exhaustion of CD8+ T cells, leading to CRC immune escape. Hypercholesterolemia damaged the ER structure of CD8+ T cells and increased the expression of ER stress molecules (CHOP and GRP78), lead to CD8+ T cell exhaustion. The expression of mitophagy-related proteins (BNIP3, PINK and Parkin) in exhausted CD8+ T cells increased at high cholesterol levels, causing mitochondrial energy disturbance. High cholesterol enhanced the colocalization of Fis1/Bap31, MFN2/cox4/HSP90B1, VAPB/PTPIP51, VDAC1/IPR3/GRP75 in ERMCs, indicated that high cholesterol promoted the intermolecular interaction between ER and mitochondrial membranes in CD8+ T cells. CONCLUSION: High cholesterol regulated the ERS-ERMC-mitophagy axis to induce the exhaustion of CD8+ T cells in CRC.


Assuntos
Neoplasias Colorretais , Hipercolesterolemia , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Hipercolesterolemia/metabolismo , Exaustão das Células T , Camundongos Endogâmicos C57BL , Colesterol , Mitocôndrias/metabolismo , Neoplasias Colorretais/patologia , Estresse do Retículo Endoplasmático , Apoptose , Proteínas Tirosina Fosfatases/metabolismo
18.
Mol Nutr Food Res ; 67(24): e2300515, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37876152

RESUMO

SCOPE: Substituting plant protein for animal protein has emerged as a promising strategy for managing atherogenic lipids. However, the impact of long-term intake of a high plant protein diet (HPD) on hepatic lipid disorder remains unclear. METHODS AND RESULTS: Eight-week-old apolipoprotein E deficient (apoE-/- ) mice are fed with either a normal protein diet (NCD) or HPD for 12 weeks. HPD intervention results in decreased body weight accompanied by increased energy expenditure, with no significant effect on glycemic control. Long-term intake of HPD improves the serum and hepatic lipid and cholesterol accumulation by suppressing hepatic squalene epoxidase (SQLE) expression, a key enzyme in cholesterol biosynthesis. Integrated analysis of 16S rDNA sequencing and metabolomics profiling reveals that HPD intervention increases the abundance of the Lachnospiraece family and serum levels of 12,13-DiHOME. Furthermore, in vivo studies demonstrate that 12,13-DiHOME significantly inhibits lipid accumulation, as well as SQLE expression induced by oleic acid in HepG2 cells. CONCLUSION: Diet rich in plant protein diet alleviates hyperlipidemia via increased microbial production of 12,13-DiHOME.


Assuntos
Microbioma Gastrointestinal , Hipercolesterolemia , Camundongos , Animais , Dieta , Fígado/metabolismo , Hipercolesterolemia/metabolismo , Colesterol , Proteínas de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
19.
Int J Biol Macromol ; 253(Pt 5): 127061, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37751822

RESUMO

Long noncoding RNAs (lncRNAs) have emergingly been implicated in mammalian lipid metabolism. However, their biological functions and regulatory mechanisms underlying adipogenesis remain largely elusive in chicken. Here, we systematically characterized the genome-wide full-length lncRNAs in the livers of pre- and peak-laying hens, and identified a novel intergenic lncRNA, lncHLEF, an RNA macromolecule with a calculated molecular weight of 433 kDa. lncHLEF was primarily distributed in cytoplasm of chicken hepatocyte and significantly up-regulated in livers of peak-laying hens. Functionally, lncHLEF could promote hepatocyte lipid droplet formation, triglycerides and total cholesterol contents. Mechanistically, lncHLEF could not only serve as a competitive endogenous RNA to modulate miR-2188-3p/GATA6 axis, but also encode three small functional polypeptides that directly interact with ACLY protein to enable its stabilization. Importantly, adeno-associated virus-mediated liver-specific lncHLEF overexpression resulted in increased hepatic lipid synthesis and intramuscular fat (IMF) deposition, but did not alter abdominal fat (AbF) deposition. Furthermore, hepatocyte lncHLEF could be delivered into intramuscular and abdominal preadipocytes via hepatocyte-secreted exosome to enhance intramuscular preadipocytes differentiation without altering abdominal preadipocytes differentiation. In conclusion, this study revealed that the lncHLEF could promote hepatic lipid synthesis through two independent regulatory mechanisms, and could enhance IMF deposition via hepatocyte-adipocyte communications mediated by exosome.


Assuntos
Exossomos , Hipercolesterolemia , MicroRNAs , RNA Longo não Codificante , Animais , Feminino , Galinhas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/genética , Exossomos/metabolismo , RNA Longo não Codificante/genética , Adipogenia/genética , Fígado/metabolismo , Triglicerídeos/metabolismo , Hipercolesterolemia/metabolismo , Peptídeos/metabolismo , Mamíferos/genética
20.
Clin Transl Med ; 13(9): e1415, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37740460

RESUMO

BACKGROUND: Osteoarthritis (OA) is a prevalent and debilitating condition, that is, directly associated with cholesterol metabolism. Nevertheless, the molecular mechanisms of OA remain largely unknown, and the role of cholesterol in this process has not been thoroughly investigated. This study aimed to investigate the role of a novel circular RNA, circARPC1B in the relationship between cholesterol and OA progression. METHODS: We measured total cholesterol (TC) levels in the synovial fluid of patients with or without OA to determine the diagnostic role of cholesterol in OA. The effects of cholesterol were explored in human and mouse chondrocytes in vitro. An in vivo OA model was also established in mice fed a high-cholesterol diet (HCD) to explore the role of cholesterol in OA. RNAseq analysis was used to study the influence of cholesterol on circRNAs in chondrocytes. The role of circARPC1B in the OA development was verified through circARPC1B overexpression and knockdown. Additionally, RNA pulldown assays and RNA binding protein immunoprecipitation were used to determine the interaction between circARPC1B and Vimentin. CircARPC1B adeno-associated virus (AAV) was used to determine the role of circARPC1B in cholesterol-induced OA. RESULTS: TC levels in synovial fluid of OA patients were found to be elevated and exhibited high sensitivity and specificity as predictors of OA diagnosis. Moreover, elevated cholesterol accelerated OA progression. CircARPC1B was downregulated in chondrocytes treated with cholesterol and played a crucial role in preserving the extracellular matrix (ECM). Mechanistically, circARPC1B is competitively bound to the E3 ligase synoviolin 1 (SYVN1) binding site on Vimentin, inhibiting the proteasomal degradation of Vimentin. Furthermore, circARPC1B AAV infection alleviates Vimentin degradation and OA progression caused by high cholesterol. CONCLUSIONS: These findings indicate that the cholesterol-circARPC1B-Vimentin axis plays a crucial role in OA progression, and circARPC1B gene therapy has the opportunity to provide a potential therapeutic approach for OA.


Assuntos
Cartilagem Articular , Hipercolesterolemia , MicroRNAs , Osteoartrite , Humanos , Camundongos , Animais , Cartilagem Articular/metabolismo , RNA Circular/metabolismo , MicroRNAs/genética , Hipercolesterolemia/metabolismo , Vimentina/genética , Vimentina/metabolismo , Vimentina/farmacologia , Osteoartrite/genética , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Colesterol/efeitos adversos , Colesterol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...